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Guide Content:

1. Classification of ODEs

2. Definitions & Properties

3. Theorems

4. Recipes

As usual, if you see any errors contact me. You know, I just realized for the past half of this semester, I
didn’t have a sleep schedule, I was in a sleep freestyle.
This cram list is definitely not exhaustive, though I tried covered the most of the definitions, theorems,
and problem types that I think are important.
I recommend in addition to reading the theory from this guide, it is also more appropriate to glance
through our tutorial question sheets. Not necessarily to solve every single question but at least enough
to experience all the problem types and get a rough idea on how to solve each of them.

1 Classification of ODEs
Before we understand what theorems apply under what circumstances, or what recipes are used for which
ODEs, it is probably better to first grasp the differences between all the ODEs we have learned so far.
Below I listed the ODEs we learned in mostly chronological order.
For the following ODEs, we assume there exist intervals Ix, Iy for variables x, y where all the functions
defined for a given ODE are continuous under them and the ODEs holds true ∀x ∈ Ix,∀y ∈ Iy.

1. 1st + Linear
p(x)y′ + q(x)y = g(x)

2. 1st + Separable
M(x) +N(y)y′ = 0

3. 1st + Exact
M(x, y) +N(x, y)y′ = 0

∂yM(x, y)− ∂xN(x, y) = 0

4. 1st + Inexact →1st + Exact

M(x, y) +N(x, y)y′ = 0

∂y (µ(x, y)M(x, y))− ∂x (µ(x, y)N(x, y)) = 0

5. 2nd + Linear + Homogeneous + Constant Coefficient

ay′′ + by′ + cy = 0
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6. 2nd + Linear + Homogeneous

p(x)y′′ + q(x)y′ + r(x)y = 0

7. 2nd + Linear + Non-Homogeneous

p(x)y′′ + q(x)y′ + r(x)y = g(x)

∃x0 ∈ Ix s.t. g(x0) 6= 0

8. 2nd + Linear
p(x)y′′ + q(x)y′ + r(x)y = g(x)

9. 2nd + Linear + Homogeneous →2nd + Exact

p(x)y′′ + q(x)y′ + r(x)y = 0

where (p(x)y′)′ + (f(x)y)′ = 0

10. 2nd + Linear + Homogeneous →2nd + Inexact →2nd + Exact w/ Adjoint Equation

p(x)y′′ + q(x)y′ + r(x)y = 0

where (µ(x)p(x)y′)′ + (f(x)y)′ = 0

s.t. Pµ′′ + (2P ′ −Q)µ′ + (P ′′ −Q′ +R)µ = 0

11. nth + Linear + Homogeneous + Constant Coefficient

a0y
(n) + a1y

(n−1) + · · ·+ any = 0

12. nth + Linear + Homogeneous

p0(x)y
(n) + p1(x)y

(n−1) + · · ·+ pn(x)y = 0

13. nth + Linear + Non-Homogeneous

p0(x)y
(n) + p1(x)y

(n−1) + · · ·+ pn(x)y = g(x)

∃x0 ∈ Ix s.t. g(x0) 6= 0

14. nth + Linear
p0(x)y

(n) + p1(x)y
(n−1) + · · ·+ pn(x)y = g(x)

2 Definitions & Properties
Here are some definitions and properties that might be useful to know. Some of the properties mentioned
here are direct results of certain theorems that will be talked about in the next section. But I decided to
include those as ”properties” prior as I felt like they intuitively make more sense when bundled with the
definitions.
Many of the definitions here such as linear independence, or fundamental set of solutions, etc, are actually
not limited to just two solutions for a 2nd order linear ODE. Keep in mind that they be generalized to
n-th order as well. Stay flexible.

1) Linear Independence

Two functions y1(x), y2(x) defined on a common interval I are linearly dependent iff ∃c1, c2 ∈ R
such that ∀x ∈ I outside c1 = c2 = 0, we have

c1y1(x) + c2y2(x) = 0

Two functions y1(x), y2(x) defined on a common interval I are linearly independent iff y1(x), y2(x)
are not linearly dependent.
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Remark: Just because y1, y2 are linearly dependent on I1 and I2 does not imply y1, y2 must
also be linearly dependent on I1 ∪ I2. (See textbook Page 153, Problem 28)

2) Wronskian

Two functions y1(x), y2(x) defined on a common interval I are differentiable has their Wronskian
defined as

W (y1, y2) = det

(
y1 y2
y′1 y′2

)
Functions y1(x), · · · , yn(x) defined on a common interval I are n-1 th differentiable has their Wronskian
defined as

W (y1, · · · , yn) = det

 y1 · · · yn
...

. . .
...

y
(n−1)
1 · · · y

(n−1)
n


We can also say y1(x), y2(x) defined on a common interval I are differentiable are linearly indepen-
dent if

∃x0 ∈ I, s.t. W (y1, y2)(x0) 6= 0

Remark: The converse of the above statement is not always true. From the contrapositive,
we see that if y1, y2 are linearly dependent, then Wronskian 0,∀x0 ∈ I. This means that
if y1, y2 are linearly dependent and differentiable on I1, I2 individually, then W (y1, y2) =
0,∀x0 ∈ I1 ∪ I2, but y1, y2 can still be linearly independent on I1 ∪ I2.

3) Linear Operator

Given a nth order linear homogeneous ODE in the general form in the list of ODEs from the previous
section.
We can have Linear Operator of the above ODE that takes a function y(x) as input defined as

L := p0(x)
∂n

∂xn
+ p1(x)

∂n−1

∂xn−1
+ · · ·+ pn(x)

Due to the ODE being linear and homogeneous, we can have the property Superposition

L(a1y1 + a2y2 + · · ·+ anyn) = 0

∀a1, · · · , an ∈ R, where y1, · · · , yn are solutions to the ODE.

4) Linear Independence for Solutions of ODE

Given a 2nd order linear homogeneous ODE in the general form in the list of ODEs from the previous
section.
Let all functions p(x), q(x), r(x) be continuous on I, and y1, y2 be solutions of the ODE. y1(x), y2(x)
are linearly dependent on I if and only if

∃x0 ∈ I s.t. W (y1, y2)(x0) = 0

Similarly y1(x), y2(x) are linearly independent on I if and only if

∃x0 ∈ I s.t. W (y1, y2)(x0) 6= 0
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Remark: The definitions of linear independence mentioned in this guide are all logically
equivalent. The only difference is that if y1, y2 ∈ I are solutions of a single ODE, and if
y1, y2 linearly dependent on I1, I2, then y1, y2 must also be linearly dependent on I1 ∪ I2.
This restriction allows the converse statement, or single Wronskian non-zero implies linear
independence true.
In other words, testing two functions’ linear independence using Wronskian might be some-
times unreliable. But if they are both solutions under a single ODE, then Wronskian ⇔linear
independence becomes logically equivalent and incredibly convenient to work with.
Assuming every point in the interval is ordinary.

5) Fundamental Set of Solutions

Given a 2nd order linear homogeneous ODE in the general form in the list of ODEs from the previous
section.
Let all functions p(x), q(x), r(x) be continuous on I, and y1, y2 be solutions of the ODE. The following
are logically equivalent

1) y1, y2 are a fundamental set of solutions on I.
2) y1, y2 are linearly independent on I.
3) ∃x0 ∈ I s.t. W (y1, y2)(x0) 6= 0.
4) W (y1, y2)(x0) 6= 0, ∀x0 ∈ I.

The general solution of this 2nd order linear homogeneous ODE is then the linear combination of
the solutions in the fundamental set of solutions.

6) Uniform & Point-Wise Convergence

Given a sequence {fn(x)}, it is point-wise convergent if ∃k ∈ R,∀ε > 0 and N ∈ N depends on ε
and x, such that

|fn(x)− k| < ε, ∀n ≥ N, ∀x ∈ R
It is uniformly convergent if N depends only on ε for the above to hold.

Remark: As we can see from the definition, uniformly convergent implies point-wise conver-
gent, though the converse is false.

7) Radius of Convergence

Given a power series f(x) =
∑∞

n=0 an(x − x0)
n centered at x0. Its radius of convergence ρ is

defined as f(x) converges absolutely ∀x ∈ (x0 − ρ, x0 + ρ) and diverges outside of (x0 − ρ, x0 + ρ).
Refer to complex analysis lecture notes on how to calculate ρ in more detail. As a reminder, we can
calculate ρ in three ways

1

R
= lim

n→∞

(
sup
m≥n

|am| 1
m

)
1

R
= lim

n→∞
|an|

1
n

1

R
= lim

n→∞

|an+1|
|an|

8) Analytic

A function f(x) is analytic at x0 if it can be represented as a Taylor series centered at x0 that equals
to f(x) itself around a non-zero radius open ball. Recall that Taylor expansion at x0 is

f(x) =

∞∑
n=0

f (n)(x0)

n!
(x− x0)

n
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In our math lectures, the above is the full definition. But for our physics lectures, we don’t
need to be entirely mathematically rigorous. So often just showing f(x) have a Taylor series
expansion at x0 is enough.

9) Ordinary & Singular Point

Given a 2nd order linear homogeneous ODE in the general form in the list of ODEs from the previous
section.
x0 is an ordinary point the following two limits both exist

lim
x→x0

q(x)

p(x)
and lim

x→x0

r(x)

p(x)

If x0 is singular point if it is not ordinary.

3 Theorems
All the important theorems at a glance

1) Existence& Uniqueness Theorem for nth + Linear ODE

Given a nth order linear homogeneous ODE in the general form in the list of ODEs from the previous
section.
Let all functions p0, · · · , pn be continuous in I. There exists an unique solution y(x) for this given
ODE that satisfies

y(i)(x0) = ai

∀i ∈ [0, · · · , n], and x0 ∈ I, for some a0, · · · , an ∈ R.

2) Existence& Uniqueness Theorem for 1st + Nonlinear ODE

Let f and ∂yf continuous on a rectangle (α, β)× (α′, β′), containing point (x0, y0). Then there exists
an δ such that there exists an unique solution y(x) that satisfies

y′ = f(x, y), y(x0) = y0

∀x ∈ (x0 − δ, x0 + δ).

3) Theorem 3.2.3, 3.2.4, 3.2.5

If two solutions y1, y2 of a 2nd order linear ODE are linearly independent through the Wronskian
test on an interval I where the coefficients of the ODE are continuous and ordinary, then the linear
combination of those two solutions c1y1(x) + c2y2(x) is still a solution.
And if we also have the linear combination satisfy y(x0) = a0, y

′(x0) = a1, then the constants c1, c2
can be found.
Additionally, y1, y2 can form a fundamental set of solutions for this given ODE.

Remark: This can easily be generalized to nth order linear ODE. Check Theorem 4.1.2. I
will omit it here in this guide for condensation.

4) Abel’s Theorem

Given y′′ + p(x)y′ + q(x)y = 0, where p, q continuous on I, and y1, y2 solutions of this ODE. Then

W (y1, y2)(x) = C exp

(
−
∫

p(x) dx

)
where c is a constant that depends on y1, y2.
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Corollary: As we can see, ex will never equate to zero, so the only way for Wronskian to be
zero is for C to be zero. And if Wronskian is zero for some x0 it will always be zero for any
x ∈ I, this is true for non-zero as well. Therefore, it becomes incredibly easy to tell linearly
independent and dependent solutions apart with the Wronskian due to this above theorem.
Remark: One thing to note is that this Abel’s formula is derived based on the fact y′′ have
a coefficient of 1, or in other words, the entire interval I contains only ordinary points. If
we test the solutions y1, y2 on singular points, the above corollary will not hold.

Proof. We have

y′′1 + p(x)y′1 + q(x)y = 0

y′′2 + p(x)y′2 + q(x)y = 0

Multiply first equation by −y2, second by y1, combine them we get

(y1y
′′
2 − y′′1 y2) + p(x)(y1y

′
2 − y′1y2) = 0

Observe that
W ′(y1, y2) = y1y

′′
2 − y′′1 y2

So we can rewrite the combined equation as

W ′ + p(t)W = 0

And we can obtain the Abel’s formula from here

5) General solution of non-homogeneous linear ODE

Given a nth order linear non-homogeneous ODE in the general form in the list of ODEs from the
previous section.
Let all functions p0, · · · , pn, g be continuous in I. Then the general solution can be written as

y(x) = yh(x) + yp(x)

where yh is the general solution to the homogeneous version of the given ODE, and yp is a any
particular function that satisfies the non-homogeneous ODE. Additionally, the general solution yh can
be a linear combination a fundamental set of solutions and rewrite y as

y(x) = (c1y1(x) + · · · cnyn(x)) + yp(x)

6) Fuch’s Theorem

Given a general 2nd order homogeneous linear ODE

P (x)y′′ +Q(x)y′ +R(x)y = 0

if Q
P and R

P are analytic at x0, then the two linearly independent solutions y1, y2 and general solution
y can be expressed as

y1(x) =

∞∑
n=0

an(x− x0)
n

y2(x) =

∞∑
n=0

bn(x− x0)
n

y(x) = c1y1(x) + c2y2(x)

where {an} and {bn} are two sequences of constants and c1, c2 variables.
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Remark: If P,Q,R are all represented as polynomials, then instead of checking if the ratio
are analytic, we can simplify condition to checking if limx→x0

Q
P and limx→x0

R
P exist.

Additionally, let ρ, ρ1, ρ2, ρ3, ρ4 be the radius of convergence for y, y1, y2, Q
P , R

P . We have that
ρ = min{ρ1, ρ2} ≥ min{ρ3, ρ4}

4 Recipes
Make sure to understand the necessary pre-requisites before throwing a nuke on those types of problems.
Observe many of the theorems and problems the recipes solve have only a constant coefficient of 1 in front
of the term with the highest order (e.g. 1·y′′+p(x)y′+q(x)y = g(x) instead p(x)y′′+q(x)y′+r(x)y = g(x)).
This important distinction makes sure that all functions are continuous on an interval I such that all
points in this interval are ordinary. Freeing us from dealing with edge cases that singular points might
bring (See textbook Page 153, Problem 27).
Some recipes below can also be generalized from 2nd to nth order linear ODEs.

1) (a) Problem: 1st + linear
y′ + p(x)y = g(x)

(b) Recipe:

µ(x) = exp

(∫
p(x) dx

)
y(x) =

∫
µ(x)g(x) dx+ C

µ(x)

(c) Proof. Multiply our ODE by µ(x) we get

µy′ + µpy = g

Let’s also define µ such that µg = (µy)′ = µ′y + µy′. Then we see that

µ′y = µpy

µ(x) = exp

(∫
p(x) dx

)
Using our definition, we can continue with

µ(x)y(x) =

∫
µ(x)g(x) dx+ C

Divide both sides by µ(x) we get our recipe.

2) (a) Problem: 1st + separable
M(x) +N(y)y′ = 0

where y(x0) = y0

(b) Recipe: ∫ x

x0

M(x) dx+

∫ y

y0

N(x) dx = 0

(c) Proof. Let H ′
1(x) = M(x),H ′

2(y) = N(y). We can rewrite the ODE as

H ′
1(x) +H ′

2(y)
∂y

∂x
= 0

7



∂

∂x
H1(x) +

∂

∂x
H2(y) = 0

H1(x) +H2(y) = C

Since H1(x) =
∫ x

x0
M(x) dx and H2(x) =

∫ y

y0
N(y) dy by definition. We can obtain our recipe

above.

3) (a) Problem: 1st + exact
M(x, y) +N(x, y)y′ = 0

∂M

∂y
=

∂N

∂x

(b) Recipe:

φ(x, y) = C

where
∂φ

∂x
= M,

∂φ

∂y
= N

(c) Proof. Refer to textbook Page 91 for proof.

4) (a) Problem: 1st + inexact
M(x, y) +N(x, y)y′ = 0

∃µ(x, y) s.t. ∂µM

∂y
=

∂µN

∂x

(b) Recipe:

φ(x, y) = C

where
∂φ

∂x
= µM,

∂φ

∂y
= µN

(c) Proof. Similar to the 1st + exact proof.

5) (a) Problem: 2nd + linear + homogeneous + constant coefficient

ay′′ + by′ + cy = 0

(b) Recipe:

Let r1, r2 be solutions of ax2 + bx+ c = 0.
If r1 6= r2 ∈ R

y(x) = c1e
r1x + c2e

r2x

If r1 = r2 ∈ R
y(x) = c1e

r1x + c2xe
r1x

If r1, r2 = λ± µxi ∈ C

y(x) = eλx (c1 cos(µx) + c2 sin(µx))

(c) Proof. Assume solution is y(x) = erx. Plug this into the ODE we get

erx
(
ar2 + br + c

)
= 0

Since erx cannot be equal to zero. Only ar2 + br+ c = 0 is possible. Solving for the roots of this
quadratic we will get three different scenarios as follows in the recipe.
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6) (a) Problem: Reduction of Order from 2nd →1st

y′′ + p(x)y′ + q(x)y = 0

Suppose we know one solution y1(x) for ODE above, find second solution.
(b) Recipe:

We have y2(x) = v(x)y1(x), with v(x) a non-constant function to ensure y1, y2 linearly
independent, where v′(x) = w(x) such that

y1(x)w
′ + (2y′1(x) + p(x)y1(x))w = 0

(c) Proof. We have that

y2 = vy1

y′2 = v′y1 + vy′1

y′′2 = v′′y1 + 2v′y′1 + vy′′1

Plug those into the ODE we get that

(v′′y1 + 2v′y′1 + vy′′1 ) + p (v′y1 + vy′1) + q(vy1) = 0

Reordering this we get

(v′′y1 + 2v′y′1) + p (v′y1+) = −v (y′′1 + py′1 + qy1)

Since the right hand side is just zero. Set v′ = w, reorder the above ODE we get the condition in
the recipe. We see that this new ODE in terms of W is a first order separable and linear ODE.
We can then solve it by either means.

7) (a) Problem: 2nd + linear + Variation of Parameters

p(x)y′′ + q(x)y′ + r(x)y = g(x)

Suppose we know y1(x), y2(x) for homogeneous version of the ODE above, find particular solution
for the above non-homogeneous ODE.

(b) Recipe:

yp(x) = µ1(x)y1(x) + µ2(x)y2(x)

where

µ1(x) = −
∫ y2(x)

g(x)
p(x)

W (y1, y2)(x)
dx+ C1

µ2(x) =

∫ y1(x)
g(x)
p(x)

W (y1, y2)(x)
dx+ C1

(c) Proof. The beginning of this proof is similar to the one from Reduction of Order. We assume
that yp = µ1y1 + µ2y2 for some µ1, µ2. We see that

y′p = µ′
1y1 + µ1y

′
1 + µ′

2y2 + µ2y
′
2

y′′p = (µ′
1y1 + µ′

2y2)
′ + µ′

1y
′
1 + µ1y

′′
1 + µ′

2y
′
2 + µ2y

′′
2

Plug those into the original ODE and reorder, we see that

p ((µ′
1y1 + µ′

2y2)
′ + µ′

1y
′
1 + µ′

2y
′
2)+q (µ′

1y1 + µ′
2y2) = g−(µ1(py

′′
1 + qy′1 + ry1) + µ2(py

′′
2 + qy′2 + ry2))
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We notice that the right hand side is just g as the rest are just zero since y1, y2 are solution to
the homogeneous version of this ODE.

p ((µ′
1y1 + µ′

2y2)
′ + µ′

1y
′
1 + µ′

2y
′
2) + q (µ′

1y1 + µ′
2y2) = g

Since µ1, µ2 are arbitrary, we can manually set them to whatever we like so long the above
equality is satisfied. One such solution set is the one below

µ′
1y1 + µ′

2y2 = 0

µ′
1y

′
1 + µ′

2y2 =
g

p

We can rewrite those as (
y1 y2
y′1 y′2

)(
µ′
1

µ′
2

)
=

(
0
g
p

)
Solving for µ′

1, µ
′
2 we get that (

µ′
1

µ′
2

)
= det

(
y1 y2
y′1 y′2

)−1 (−y1
g
p

y1
g
p

)
Finally take this matrix multiplication apart and integrate both µ′

1, µ
′
2 individually we get the

recipe presented.

8) (a) Problem: nth + linear + Undetermined Coefficients

p(x)y′′ + q(x)y′ + r(x)y = g(x)

Suppose we know y1(x), y2(x) for homogeneous version of the ODE above, find particular solution
for the above non-homogeneous ODE.

(b) Recipe:

Remark: In the case when our Y (t) is part of the Kernel of the ODE’s corresponding
Linear Operator, we just keep multiplying everything by t until we are not.

(c) Proof. Proof should be fairly intuitive. Refer to textbook Page 176.

9) (a) Problem: 2nd + linear + Series Solution w/ Fuch

p(x)y′′ + q(x)y′ + r(x)y = 0

Find general solution y(x) of the above ODE at an ordinary point x0. Additionally p, q, r are
represented as polynomials.

(b) Recipe:
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1) Check x0 is an ordinary point.
2) Assume y =

∑∞
n=0 an(x− x0)

n and substitute into the ODE.
3) Obtain recurrence relation for {an}.
4) Find two linearly independent series solution y1, y2. Write the first four non-zero

terms of each solution. Write in summation form if possible.
5) Find the radii of convergence ρ1, ρ2 for y1, y2. We have y(x) = c1y1(x) + c2y2(x)

radius of convergence ρ = min{ρ1, ρ2}.

(c) We will show the converse, if y can be represented as a series solution, then the two ratios must
be analytic.

Proof. Assume y =
∑∞

n=0 an(x− x0)
n centered at x0. We see that

an =
y(n)(x0)

n!

In other words, to uniquely identify y, we just need all of its infinite sequence of coefficients. And
to find those coefficients we just need its infinite orders of derivatives. Is it possible to figure out
those derivatives from our ODE? Turns out we can if

u1(x) :=
q(x)

p(x)

u2(x) :=
r(x)

p(x)

Since we are working on an interval I that ∀x ∈ I, x is ordinary. So we can rewrite ODE as

y′′ = − (u1y
′ + u2y)

We see that if we know y, y′, we can determine y′′. Take derivative on both sides we get

y′′′ = − (u′
1y

′ + u1y
′′ + u′

2y + u2y
′)

We see that if we know y′, y′′, we can determine y′′′, and so on. So basically as long as u1, u2 are
k-th differentiable, then we can obtain the k + 1-th derivative of y, and figure out ak+1.
If we want to know the entirety of {an}, we need entirety of y(n), or the entirety of u(n)

1 , u
(n)
2 . In

other words, we want u1, u2 to be infinitely differentiable, and that basically requires them to be
analytic.

5 Closing
Congrats on making it to the end of this guide! Phew it sure ain’t easy nowadays.
Hopefully, you got something out of it. If questions/errors, contact me on Discord/Instagram/Messen-
ger/Wechat/Slack/Line/Telegram, in order of high → low priority. My profile picture is a pixel art of a
Blue Bird for all of them.
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